Table des matières:

Mesure de la température à l'aide du TMP112 et du photon de particules : 4 étapes
Mesure de la température à l'aide du TMP112 et du photon de particules : 4 étapes

Vidéo: Mesure de la température à l'aide du TMP112 et du photon de particules : 4 étapes

Vidéo: Mesure de la température à l'aide du TMP112 et du photon de particules : 4 étapes
Vidéo: How to use LM75A Temperature sensor with Arduino code 2024, Novembre
Anonim
Image
Image

Module I2C MINI de capteur de température numérique TMP112 haute précision, basse consommation. Le TMP112 est idéal pour les mesures de température étendues. Cet appareil offre une précision de ±0,5°C sans nécessiter d'étalonnage ou de conditionnement de signal de composant externe.

Dans ce tutoriel, l'interfaçage du module capteur TMP112 avec le photon particulaire a été illustré. Pour lire les valeurs de température, nous avons utilisé arduino avec un adaptateur I2c. Cet adaptateur I2C rend la connexion au module capteur facile et plus fiable.

Étape 1: Matériel requis:

Matériel requis
Matériel requis
Matériel requis
Matériel requis
Matériel requis
Matériel requis

Les matériaux dont nous avons besoin pour atteindre notre objectif comprennent les composants matériels suivants:

1. TMP112

2. Photon de particule

3. Câble I2C

4. Bouclier I2C pour les photons de particules

Étape 2: connexion matérielle:

Raccordement matériel
Raccordement matériel
Raccordement matériel
Raccordement matériel

La section de raccordement matériel explique essentiellement les connexions de câblage requises entre le capteur et le photon particulaire. Assurer des connexions correctes est la nécessité de base tout en travaillant sur n'importe quel système pour la sortie souhaitée. Ainsi, les connexions requises sont les suivantes:

Le TMP112 fonctionnera sur I2C. Voici l'exemple de schéma de câblage, montrant comment câbler chaque interface du capteur.

Prête à l'emploi, la carte est configurée pour une interface I2C, en tant que telle, nous vous recommandons d'utiliser cette connexion si vous êtes par ailleurs agnostique. Tout ce dont vous avez besoin, c'est de quatre fils !

Seules quatre connexions sont nécessaires pour les broches Vcc, Gnd, SCL et SDA et celles-ci sont connectées à l'aide d'un câble I2C.

Ces connexions sont illustrées dans les images ci-dessus.

Étape 3: Code pour la mesure de la température:

Code pour la mesure de la température
Code pour la mesure de la température

Commençons maintenant par le code des particules.

Lors de l'utilisation du module de capteur avec l'arduino, nous incluons les bibliothèques application.h et spark_wiring_i2c.h. Les bibliothèques "application.h" et spark_wiring_i2c.h contiennent les fonctions qui facilitent la communication i2c entre le capteur et la particule.

Le code de particule complet est donné ci-dessous pour la commodité de l'utilisateur:

#comprendre

#comprendre

// L'adresse I2C du TMP112 est 0x48(72)

#define adresse 0x48

double cTemp = 0,0, fTemp = 0,0;

void setup()

{

// Définir la variable

Particule.variable("i2cdevice", "TMP112");

Particule.variable("cTemp", cTemp);

// Initialiser la communication I2C en tant que MASTER

Fil.begin();

// Initialiser la communication série, définir le débit en bauds = 9600

Serial.begin(9600);

// Démarrer la transmission I2C

Wire.beginTransmission(Adr);

// Sélection du registre de configuration

Wire.write(0x01);

// Conversion continue, mode comparateur, résolution 12 bits

Wire.write(0x60);

Wire.write(0xA0);

// Arrêter la transmission I2C

Wire.endTransmission();

retard (300);

}

boucle vide()

{

données int non signées[2];

// Démarrer la transmission I2C

Wire.beginTransmission(Adr);

// Sélection du registre des données de température

Wire.write(0x00);

// Arrêter la transmission I2C

Wire.endTransmission();

retard (300);

// Demande 2 octets de données

Wire.requestFrom(Adr, 2);

// Lecture de 2 octets de données

// temp msb, temp lsb

if(Fil.disponible() == 2)

{

data[0] = Wire.read();

données[1] = Wire.read();

}

// Convertir les données en 12 bits

int temp = ((données[0] * 256) + (données[1])) / 16;

si(temp > 2048)

{

temp -= 4096;

}

cTemp = température * 0,0625;

fTemp = cTemp * 1,8 + 32;

// Sortie des données vers le tableau de bord

Particle.publish("Température en Celsius: ", String(cTemp));

retard(1000);

Particle.publish("Température en Fahrenheit: ", String(fTemp));

retard(1000);

}

La fonction Particle.variable() crée les variables pour stocker la sortie du capteur et la fonction Particle.publish() affiche la sortie sur le tableau de bord du site.

La sortie du capteur est montrée dans l'image ci-dessus pour votre référence.

Étape 4: Candidatures:

Applications
Applications

Diverses applications intégrant le capteur de température numérique TMP112 basse consommation et haute précision incluent la surveillance de la température de l'alimentation, la protection thermique des périphériques informatiques, la gestion de la batterie ainsi que les machines de bureau.

Conseillé: