Table des matières:
- Étape 1: Matériel requis:
- Étape 2: connexion matérielle:
- Étape 3: Code pour la mesure de la température:
- Étape 4: Candidatures:
Vidéo: Surveillance de la température à l'aide de MCP9808 et Arduino Nano : 4 étapes
2024 Auteur: John Day | [email protected]. Dernière modifié: 2024-01-30 09:06
Le MCP9808 est un mini module de capteur de température numérique de haute précision ± 0,5 ° C I2C. Ils sont dotés de registres programmables par l'utilisateur qui facilitent les applications de détection de température. Le capteur de température de haute précision MCP9808 est devenu un standard de l'industrie en termes de facteur de forme et d'intelligence, fournissant des signaux de capteur calibrés et linéarisés au format numérique I2C.
Dans ce tutoriel, l'interfaçage du module de capteur MCP9808 avec arduino nano a été démontré. Pour lire les valeurs de température, nous avons utilisé raspberry pi avec un adaptateur I2c. Cet adaptateur I2C rend la connexion au module capteur facile et plus fiable.
Étape 1: Matériel requis:
Les matériaux dont nous avons besoin pour atteindre notre objectif comprennent les composants matériels suivants:
1. MCP9808
2. Arduino Nano
3. Câble I2C
4. Bouclier I2C pour Arduino nano
Étape 2: connexion matérielle:
La section de raccordement matériel explique essentiellement les connexions de câblage requises entre le capteur et l'arduino nano. Assurer des connexions correctes est la nécessité de base tout en travaillant sur n'importe quel système pour la sortie souhaitée. Ainsi, les connexions requises sont les suivantes:
Le MCP9808 fonctionnera sur I2C. Voici l'exemple de schéma de câblage, montrant comment câbler chaque interface du capteur.
Prête à l'emploi, la carte est configurée pour une interface I2C, en tant que telle, nous vous recommandons d'utiliser cette connexion si vous êtes par ailleurs agnostique. Tout ce dont vous avez besoin, c'est de quatre fils !
Seules quatre connexions sont nécessaires pour les broches Vcc, Gnd, SCL et SDA et celles-ci sont connectées à l'aide d'un câble I2C.
Ces connexions sont illustrées dans les images ci-dessus.
Étape 3: Code pour la mesure de la température:
Commençons maintenant par le code Arduino.
Lors de l'utilisation du module de capteur avec l'Arduino, nous incluons la bibliothèque Wire.h. La bibliothèque "Wire" contient les fonctions qui facilitent la communication i2c entre le capteur et la carte Arduino.
Le code Arduino complet est donné ci-dessous pour la commodité de l'utilisateur:
#comprendre
// L'adresse I2C du MCP9808 est 0x18(24)
#define adresse 0x18
void setup()
{
// Initialiser la communication I2C en tant que MASTER
Fil.begin();
// Initialiser la communication série, définir le débit en bauds = 9600
Serial.begin(9600);
// Démarrer la transmission I2C
Wire.beginTransmission(Adr);
// Sélection du registre de configuration
Wire.write(0x01);
// Mode de conversion continu, Power-up par défaut
Wire.write(0x00);
Wire.write(0x00);
// Arrêter la transmission I2C
Wire.endTransmission();
// Démarrer la transmission I2C
Wire.beginTransmission(Adr);
// Sélection du registre de résolution
Wire.write(0x08);
// Résolution = +0,0625 / C
Wire.write(0x03);
// Arrêter la transmission I2C
Wire.endTransmission();
}
boucle vide()
{
données int non signées[2];
// Démarre la communication I2C
Wire.beginTransmission(Adr);
// Sélection du registre de données
Wire.write(0x05);
// Arrêter la transmission I2C
Wire.endTransmission();
// Demande 2 octets de données
Wire.requestFrom(Adr, 2);
// Lecture de 2 octets de données
// temp MSB, temp LSB
if(Fil.disponible() == 2)
{
data[0] = Wire.read();
données[1] = Wire.read();
}
// Convertir les données en 13 bits
int temp = ((données[0] & 0x1F) * 256 + données[1]);
si (temp > 4095)
{
temp -= 8192;
}
float cTemp = temp * 0,0625;
float fTemp = cTemp * 1,8 + 32;
// Sortie des données à l'écran
Serial.print("Température en Celsius: ");
Serial.println(cTemp);
Serial.println("C");
Serial.print("Température en Fahrenheit: ");
Serial.println(fTemp);
Serial.println(" F");
retard (500);
}
Dans la bibliothèque de fils Wire.write() et Wire.read() sont utilisés pour écrire les commandes et lire la sortie du capteur.
Serial.print() et Serial.println() sont utilisés pour afficher la sortie du capteur sur le moniteur série de l'IDE Arduino.
La sortie du capteur est montrée dans l'image ci-dessus.
Étape 4: Candidatures:
Le capteur de température numérique MCP9808 a plusieurs applications au niveau de l'industrie qui intègrent des congélateurs et des réfrigérateurs industriels ainsi que divers robots culinaires. Ce capteur peut être utilisé pour divers ordinateurs personnels, serveurs ainsi que d'autres périphériques PC.
Conseillé:
Surveillance de la température à l'aide du MCP9808 et du Raspberry Pi : 4 étapes
Surveillance de la température à l'aide du MCP9808 et du Raspberry Pi : Le MCP9808 est un mini-module de capteur de température numérique de haute précision ±0,5 °C I2C. Ils sont dotés de registres programmables par l'utilisateur qui facilitent les applications de détection de température. Le capteur de température de haute précision MCP9808 est devenu une industrie
ESP8266 Surveillance de la température Nodemcu à l'aide de DHT11 sur un serveur Web local - Obtenez la température et l'humidité de la pièce sur votre navigateur : 6 étapes
ESP8266 Surveillance de la température Nodemcu à l'aide de DHT11 sur un serveur Web local | Obtenez la température et l'humidité de la pièce sur votre navigateur : Salut les gars, aujourd'hui, nous allons faire une analyse de l'humidité et de l'humidité; système de surveillance de la température utilisant ESP 8266 NODEMCU & Capteur de température DHT11. La température et l'humidité seront obtenues à partir du capteur DHT11 et de l'amp; il peut être vu sur un navigateur quelle page Web sera gérée
Surveillance de l'accélération à l'aide de Raspberry Pi et AIS328DQTR à l'aide de Python : 6 étapes
Surveillance de l'accélération à l'aide de Raspberry Pi et AIS328DQTR à l'aide de Python : L'accélération est finie, je pense selon certaines lois de la physique. - Terry Riley Un guépard utilise une accélération incroyable et des changements rapides de vitesse lors de la poursuite. La créature la plus rapide à terre utilise de temps en temps sa vitesse maximale pour attraper une proie. Les
Surveillance de la température et de l'humidité à l'aide de SHT25 et Arduino Nano : 5 étapes
Surveillance de la température et de l'humidité à l'aide de SHT25 et d'Arduino Nano : nous avons récemment travaillé sur divers projets nécessitant une surveillance de la température et de l'humidité, puis nous nous sommes rendu compte que ces deux paramètres jouent en fait un rôle central dans l'estimation de l'efficacité de fonctionnement d'un système. Tous les deux à l'industrie
Surveillance de la température à l'aide du MCP9808 et du photon de particules : 4 étapes
Surveillance de la température à l'aide du MCP9808 et du photon de particules : Le MCP9808 est un mini-module de capteur de température numérique de haute précision ±0,5 °C I2C. Ils sont dotés de registres programmables par l'utilisateur qui facilitent les applications de détection de température. Le capteur de température de haute précision MCP9808 est devenu une industrie