Table des matières:
- Étape 1: Matériel requis:
- Étape 2: connexion matérielle:
- Étape 3: Code pour la mesure de la pression:
- Étape 4: Candidatures:
Vidéo: Mesure de la pression à l'aide du CPS120 et du photon de particules : 4 étapes
2024 Auteur: John Day | [email protected]. Dernière modifié: 2024-01-30 09:07
Le CPS120 est un capteur de pression absolue capacitif de haute qualité et à faible coût avec une sortie entièrement compensée. Il consomme très moins d'énergie et comprend un capteur micro-électro-mécanique (MEMS) ultra petit pour la mesure de la pression. Un CAN basé sur sigma-delta y est également intégré pour répondre aux exigences de sortie compensée.
Dans ce tutoriel, l'interfaçage du module capteur CPS120 avec le photon particulaire a été illustré. Pour lire les valeurs de pression, nous avons utilisé photon avec un adaptateur I2c. Cet adaptateur I2C rend la connexion au module capteur facile et plus fiable.
Étape 1: Matériel requis:
Les matériaux dont nous avons besoin pour atteindre notre objectif comprennent les composants matériels suivants:
1. CPS120
2. Photon de particule
3. Câble I2C
4. Bouclier I2C pour les photons de particules
Étape 2: connexion matérielle:
La section de raccordement matériel explique essentiellement les connexions de câblage requises entre le capteur et le photon particulaire. Assurer des connexions correctes est la nécessité de base tout en travaillant sur n'importe quel système pour la sortie souhaitée. Ainsi, les connexions requises sont les suivantes:
Le CPS120 fonctionnera sur I2C. Voici l'exemple de schéma de câblage, montrant comment câbler chaque interface du capteur.
Prête à l'emploi, la carte est configurée pour une interface I2C, en tant que telle, nous vous recommandons d'utiliser cette connexion si vous êtes par ailleurs agnostique. Tout ce dont vous avez besoin, c'est de quatre fils !
Seules quatre connexions sont nécessaires pour les broches Vcc, Gnd, SCL et SDA et celles-ci sont connectées à l'aide d'un câble I2C.
Ces connexions sont illustrées dans les images ci-dessus.
Étape 3: Code pour la mesure de la pression:
Commençons maintenant par le code des particules.
Lors de l'utilisation du module de capteur avec l'Arduino, nous incluons les bibliothèques application.h et spark_wiring_i2c.h. Les bibliothèques "application.h" et spark_wiring_i2c.h contiennent les fonctions qui facilitent la communication i2c entre le capteur et la particule.
Le code de particule complet est donné ci-dessous pour la commodité de l'utilisateur:
#comprendre
#comprendre
// L'adresse I2C du CPS120 est 0x28(40)
#define adresse 0x28
température double = 0,0, pression = 0,0;
void setup()
{
// Définir la variable
Particule.variable("i2cdevice", "CPS120");
Particle.variable("pression", pression);
Particule.variable("température", température);
// Initialiser la communication I2C en tant que MASTER
Fil.begin();
// Initialiser la communication série, définir le débit en bauds = 9600
Serial.begin(9600);
}
boucle vide()
{
données int non signées[4];
// Démarrer la transmission I2C
Wire.beginTransmission(Adr);
retard(10);
// Arrêter la transmission I2C
Wire.endTransmission();
// Demande 4 octets de données
Wire.requestFrom(Adr, 4);
// Lecture de 4 octets de données
// pression msb, pression lsb, temp msb, temp lsb
if(Fil.disponible() == 4)
{
data[0] = Wire.read();
données[1] = Wire.read();
data[2] = Wire.read();
data[3] = Wire.read();
}
// Convertir les valeurs
pression = ((((data[0] & 0x3F) * 265 + data[1]) / 16384,0) * 90,0) + 30,0;
cTemp = ((((données[2] * 256) + (données[3] & 0xFC)) / 4,0) * (165,0 / 16384,0)) - 40,0;
fTemp = cTemp * 1,8 + 32;
// Sortie des données vers le tableau de bord
Particle.publish("La pression est: ", String(pression));
retard(1000);
Particle.publish("Température en Celsius: ", String(cTemp));
retard(1000);
Particle.publish("Température en Fahrenheit: ", String(fTemp));
retard(1000);
}
La fonction Particle.variable() crée les variables pour stocker la sortie du capteur et la fonction Particle.publish() affiche la sortie sur le tableau de bord du site.
La sortie du capteur est montrée dans l'image ci-dessus pour votre référence.
Étape 4: Candidatures:
Le CPS120 a une variété d'applications. Il peut être utilisé dans des baromètres portables et fixes, des altimètres, etc. La pression est un paramètre important pour déterminer les conditions météorologiques et étant donné que ce capteur peut également être installé dans les stations météorologiques. Il peut être incorporé dans des systèmes de contrôle d'air ainsi que dans des systèmes de vide.
Conseillé:
Mesure du champ magnétique à l'aide du HMC5883 et du photon de particules : 4 étapes
Mesure du champ magnétique à l'aide du HMC5883 et du photon de particules : Le HMC5883 est une boussole numérique conçue pour la détection magnétique à faible champ. Cet appareil a une large plage de champ magnétique de +/-8 Oe et un taux de sortie de 160 Hz. Le capteur HMC5883 comprend des pilotes de sangle de démagnétisation automatique, une annulation de décalage et un
Mesure de la pression à l'aide du CPS120 et du Raspberry Pi : 4 étapes
Mesure de la pression à l'aide du CPS120 et du Raspberry Pi : Le CPS120 est un capteur de pression absolue capacitif de haute qualité et à faible coût avec une sortie entièrement compensée. Il consomme très moins d'énergie et comprend un capteur micro-électro-mécanique (MEMS) ultra petit pour la mesure de la pression. Une base sigma-delta
Mesure de la température à l'aide du MCP9803 et du photon de particules : 4 étapes
Mesure de la température à l'aide du MCP9803 et du photon de particules : Le MCP9803 est un capteur de température de haute précision à 2 fils. Ils sont dotés de registres programmables par l'utilisateur qui facilitent les applications de détection de température. Ce capteur est adapté pour un système de surveillance de la température multizone hautement sophistiqué. Dans le
Mesure de l'accélération à l'aide du BMA250 et du photon de particules : 4 étapes
Mesure de l'accélération à l'aide du BMA250 et du photon de particules : Le BMA250 est un petit accéléromètre mince à très faible consommation à 3 axes avec une mesure haute résolution (13 bits) jusqu'à ±16 g. Les données de sortie numériques sont formatées en complément à deux de 16 bits et sont accessibles via l'interface numérique I2C. Il mesure la statique
Mesure de la température à l'aide du TMP112 et du photon de particules : 4 étapes
Mesure de la température à l'aide du TMP112 et du photon de particules : module de capteur de température numérique I2C MINI de haute précision et de faible puissance TMP112. Le TMP112 est idéal pour les mesures de température étendues. Cet appareil offre une précision de ±0,5°C sans nécessiter d'étalonnage ou de conditionnement de signal de composant externe.I