Table des matières:
2025 Auteur: John Day | [email protected]. Dernière modifié: 2025-01-23 14:45
Le CPS120 est un capteur de pression absolue capacitif de haute qualité et à faible coût avec une sortie entièrement compensée. Il consomme très moins d'énergie et comprend un capteur micro-électro-mécanique (MEMS) ultra petit pour la mesure de la pression. Un CAN basé sur sigma-delta y est également intégré pour répondre aux exigences de sortie compensée.
Dans ce tutoriel, l'interfaçage du module capteur CPS120 avec raspberry pi est démontré et sa programmation à l'aide du langage Java a également été illustrée. Pour lire les valeurs de pression, nous avons utilisé raspberry pi avec un adaptateur I2c. Cet adaptateur I2C rend la connexion au module capteur facile et plus fiable.
Étape 1: Matériel requis:
Les matériaux dont nous avons besoin pour atteindre notre objectif comprennent les composants matériels suivants:
1. CPS120
2. Framboise Pi
3. Câble I2C
4. Bouclier I2C pour Raspberry Pi
5. Câble Ethernet
Étape 2: connexion matérielle:
La section de raccordement matériel explique essentiellement les connexions de câblage requises entre le capteur et le raspberry pi. Assurer des connexions correctes est la nécessité de base tout en travaillant sur n'importe quel système pour la sortie souhaitée. Ainsi, les connexions requises sont les suivantes:
Le CPS120 fonctionnera sur I2C. Voici l'exemple de schéma de câblage, montrant comment câbler chaque interface du capteur.
Prête à l'emploi, la carte est configurée pour une interface I2C, en tant que telle, nous vous recommandons d'utiliser cette connexion si vous êtes par ailleurs agnostique. Tout ce dont vous avez besoin, c'est de quatre fils !
Seules quatre connexions sont nécessaires pour les broches Vcc, Gnd, SCL et SDA et celles-ci sont connectées à l'aide d'un câble I2C.
Ces connexions sont illustrées dans les images ci-dessus.
Étape 3: Code pour la mesure de la pression:
L'avantage d'utiliser raspberry pi est qu'il vous offre la flexibilité du langage de programmation dans lequel vous souhaitez programmer la carte afin d'interfacer le capteur avec elle. En exploitant cet avantage de cette carte, nous démontrons ici sa programmation en Java. Le code java pour CPS120 peut être téléchargé depuis notre communauté GitHub qui est Dcube Store.
En plus de la facilité des utilisateurs, nous expliquons également le code ici: Comme première étape de codage, vous devez télécharger la bibliothèque pi4j en cas de Java car cette bibliothèque prend en charge les fonctions utilisées dans le code. Donc, pour télécharger la bibliothèque, vous pouvez visiter le lien suivant:
pi4j.com/install.html
Vous pouvez également copier le code Java fonctionnel de ce capteur à partir d'ici:
importer com.pi4j.io.i2c. I2CBus;
importer com.pi4j.io.i2c. I2CDevice;
importer com.pi4j.io.i2c. I2CFactory;
importer java.io. IOException;
classe publique CPS120
{
public static void main(String args) lève une exception
{
// Créer I2CBus
Bus I2CBus = I2CFactory.getInstance(I2CBus. BUS_1);
// Obtenir le périphérique I2C, l'adresse I2C CPS120 est 0x28 (40)
Périphérique I2CDevice = bus.getDevice (0x28);
// Envoi de la commande de démarrage
device.write(0x28, (octet)0x80);
Thread.sleep(800);
// Lecture de 2 octets de données, msb d'abord
octet données = nouvel octet[2];
device.read(données, 0, 2);
// Convertir les données en kPa
double pression = (((data[0] & 0x3F) * 256 + data[1]) * (90 / 16384.00)) + 30;
// Sortie des données à l'écran
System.out.printf("La pression est: %.2f kPa %n", pression);
}
}
La librairie qui facilite la communication i2c entre le capteur et la carte est pi4j, ses différents packages I2CBus, I2CDevice et I2CFactory aident à établir la connexion.
importer com.pi4j.io.i2c. I2CBus;importer com.pi4j.io.i2c. I2CDevice; importer com.pi4j.io.i2c. I2CFactory; importer java.io. IOException;
Les fonctions write() et read() sont utilisées pour écrire des commandes particulières sur le capteur pour le faire fonctionner dans un mode particulier et lire respectivement la sortie du capteur.
La sortie du capteur est également montrée dans l'image ci-dessus.
Étape 4: Candidatures:
Le CPS120 a une variété d'applications. Il peut être utilisé dans des baromètres portables et fixes, des altimètres, etc. La pression est un paramètre important pour déterminer les conditions météorologiques et étant donné que ce capteur peut également être installé dans les stations météorologiques. Il peut être incorporé dans des systèmes de contrôle d'air ainsi que dans des systèmes de vide.
Conseillé:
Mesure de la pression avec CPS120 et Arduino Nano : 4 étapes
Mesure de la pression à l'aide du CPS120 et de l'Arduino Nano : le CPS120 est un capteur de pression absolue capacitif de haute qualité et à faible coût avec une sortie entièrement compensée. Il consomme très moins d'énergie et comprend un capteur micro-électro-mécanique (MEMS) ultra petit pour la mesure de la pression. Une base sigma-delta
Tutoriel Java du capteur de pression Raspberry Pi CPS120 : 4 étapes
Tutoriel Java du capteur de pression Raspberry Pi CPS120 : Le CPS120 est un capteur de pression absolue capacitif de haute qualité et à faible coût avec une sortie entièrement compensée. Il consomme très moins d'énergie et comprend un capteur micro-électro-mécanique (MEMS) ultra petit pour la mesure de la pression. Une base sigma-delta
Mesure de la pression à l'aide du CPS120 et du photon de particules : 4 étapes
Mesure de la pression à l'aide du CPS120 et du photon de particules : Le CPS120 est un capteur de pression absolue capacitif de haute qualité et à faible coût avec une sortie entièrement compensée. Il consomme très moins d'énergie et comprend un capteur micro-électro-mécanique (MEMS) ultra petit pour la mesure de la pression. Une base sigma-delta
À l'aide de Raspberry Pi, mesurez l'altitude, la pression et la température avec le MPL3115A2 : 6 étapes
À l'aide de Raspberry Pi, mesurez l'altitude, la pression et la température avec le MPL3115A2 : sachez ce que vous possédez et sachez pourquoi vous le possédez ! C'est intrigant. Nous vivons à l'ère de l'automatisation d'Internet alors qu'elle plonge dans une pléthore de nouvelles applications. En tant que passionnés d'informatique et d'électronique, nous avons beaucoup appris avec le Raspberry Pi et
Un appareil de mesure de pression simple à des fins éducatives : 4 étapes
Un appareil de mesure de pression simple à des fins éducatives : Vous trouverez ci-dessous des instructions de construction pour un appareil très simple et facile à construire pour jouer avec les mesures de pression. Il peut être utilisable pour les écoles ou d'autres projets liés aux STEM sur les lois du gaz, mais peut également être adapté pour être intégré à d'autres appareils